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Cold versus hot shear banding in bulk metallic glass
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We present an analysis of the shear-banding dynamics in a bulk metallic glass (BMG), including the
temperature rise in the band, the sliding speed of the band, and the time elapsed as well as the step size of the
shear offset growth in a stop-and-go cycle. This model analysis quantitatively demonstrates that the major
shear band can remain cold and slide in a stick-slip manner. We predict that the shear step (distance covered by
a stop-and-go cycle) scales with the sample size and machine stiffness. We also illustrate the conditions when
such serrated shear is unsustainable and a hot shear band directly develops in a runaway instability (catastro-
phe). These findings provide physical insight into the shear-instability processes and offer useful information
for improving the plasticity of BMGs. The calculation results are used to explain several intriguing recent
experimental observations, including the stick slip of the dominant shear-band and the sample-size effects on

the plastic-flow behavior of BMGs.
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I. INTRODUCTION

For the emerging bulk metallic glasses (BMGs),' shear
banding is known to be the dominant plastic-deformation
mode at room temperature (Tg).>”” However, despite tremen-
dous current interest, the shear bands in these amorphous
metals remain poorly understood. Upon loading a BMG, one
usually observes a dominant shear band. The temperature (7)
reached inside the shear band is currently a subject under
intense debate.®~!* Unless blocked or diverted (e.g., by nano-
scale entities such as crystals’”), such a shear band could
have catastrophic consequences, ending the plastic strain ob-
servable for the BMG.

However, the shear banding does not have to be always
fatal. In Fig. 1, we observe a very different type of
shear-band behavior. Here the stress-strain curve shows clear
serrations [Fig. 1(a)] that correspond to the stop-and-go
sliding of the major shear band, for a cylindrical
Zrg4 13Cu;5.75Ni; 1Al ) BMG (Ref. 6) sample with diameter
d=1.0 mm. The repeated sliding of the shear band leads to
large plastic strains without catastrophic failure [Fig. 1(c)].
Similar observations have been reported before in this BMG
(Refs. 15 and 16) and other related BMGs. On the sheared-
apart surfaces, the stop-and-go sliding corresponds to stria-
tions with regular spacing [Fig. 1(b)] while the vein-like pat-
tern typical for a catastrophic event® is not observed. In
recent experiments, the striation spacing is found to scale
with the sample size for d=1.0, 1.5, and 2.0 mm (see Table
I).17’18

These observations raise important questions regarding
the fundamental shear-banding physics in BMGs. First, un-
der what machine/sample conditions would the dominant
shear band exhibit such stick-slip serration and when would
the band become an unstoppable runaway catastrophe
instead?'”! Second, what is the mechanism that underlies
the different behaviors? Third, what is the T reached inside
the shear band for these two bifurcated scenarios,'®!! espe-
cially for the controlled (or noncatastrophic) shear-banding
cases? Fourth, how does the shear step/offset grow and what
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controls its velocity and the step size? These intriguing ques-
tions are important for understanding the plastic flow of
amorphous solids.

This paper presents quantitative answers to these intrigu-
ing questions, using a model that goes beyond previous
treatments®!%!! (see discussion in Sec. III). In particular, our
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FIG. 1. (Color online) (a) Serrated load-displacement curve, (b)
striations (an example is pointed to by an arrow) on the sheared-
apart surface, and (c) the entire stress-strain curve (showing large
plastic strains) of a sample with d=1 mm and an aspect ratio of
2:1. The inset in (c) shows the sample after test and the viewing
direction for the micrograph in (b) (Ref. 18). (d) shows a schematic
of the machine-sample system during sliding as well as the relation-
ship between the elastic unloading of the machine and the sample
and the plastic shear (the external loading is quasistatic for the short
shear-band-sliding time).
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TABLE I. Shear step size (Ax) and temperature rise (A7) for a single shear-band-slip event calculated
using Eq. (6), in comparison with experimental measurements on different sample sizes (diameter d and
aspect ratio 2:1) and shear-band-instability index (S) (Ref. 18).

d (mm) 1.0 15 2.0 3.0 4.0
s 1.34 1.79 220 2.99 3.91
Ax (som) Eq. (6) 1.51 3.56 8.41 no stop no stop
m
T Expt.? 1.15-1.84 3-4.83 3-9 1o stop 1o stop
AT (K), Eq. (6) 2.4 5.9 13.9 >T, >T,

4Reference 18.

analysis in the following demonstrates that the stop-and-go
behavior arises from the “cold” nature of the shear band.

II. MODEL ASSUMPTIONS AND DERIVATION

To model the shear-banding process in a laboratory load-
ing test, an exact description would be rather difficult due to
many complicating factors under various experimental con-
ditions. We will, therefore, attempt to simplify the process by
capturing the controlling factors. Several assumptions, and
the related justifications, are given below as we derive the
model.

Similar to the case of static/kinetic friction,?° the activa-
tion stress of an shear band (yield stress, o) is expected to
be higher than the quasiequilibrium stress needed for running
a sliding shear band (flow stress, o) at the same T.2122 This
is due to the kinetic softening associated with the structural
disordering, chemical alienation,?! and volumetric dilatation
(such as free volume generation) in the flowing material. In a
sliding shear band, the instantaneous o should depend on
the current 7 and strain rate & within the band (thickness
~10 nm).

The local flow of the material in the thin shear band can
be considered homogeneous thus the flow stress o is pro-
portional to the product of viscosity (7) and strain rate.'®
Depending on the combination of 7 and &, the flow can be
either Newtonian (constant 7) or non-Newtonian (noncon-
stant 7).'6232% In a metallic glass/liquid, low 7 and/or high &
leads to non-Newtonian behavior, and the typical T range
(<T,, the glass-transition temperature) and & range inside
the shear band [estimated to be 10°~10°/s (Ref. 16)] bring
the shear-band material deeply into the non-Newtonian re-
gime in the 7-€ plot, where the equilibrium 7 drops steadily
with increasing € (i.e., shear thinning, see Refs. 16, 23, and
24 for representative 7-¢ plots). In such a regime, it is inter-
esting to note that the product of 7 and &, i.e., gy, is not
sensitive to & itself (when T is fixed). This seems to be a
coincidence but essentially it reflects the nature of the non-
Newtonian flow in metallic glass/liquid. To further justify the
above argument, we have employed computer simulations of
a CugyZrye metallic glass. The details of simulation can be
found in Ref. 22. The result in Fig. 2(a) clearly demonstrates
the insensitive strain-rate dependence of the o Note that
although the simulated € is several orders of magnitude
higher than the estimated € in a shear band, these strain rates
fall on the same line in the same non-Newtonian regime in

the 7-& plot. The trend in Fig. 2(a) is therefore expected to
be followed.

On the other hand, oy is found to decrease almost linearly
with increasing 7 in our simulation and the trend is shown in
Fig. 2(b). In fact, experiments suggest that the T dependence

of o may follow a universal linear relation:*

where A is a dimensionless constant determined to be
~0.0106 for various BMGs and E is the Young’s modulus of
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FIG. 2. (Color online) (a) Strain rate and (b) temperature depen-
dence of flow stress in a simulated CugyZr3¢ metallic glass (see Ref.
22 for details of simulation). The temperature in (a) was fixed at 50
K. The dashed line in (b) is a linear fit of the data (see text).
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the BMG.? In our case, AT is the temperature rise in the
band above room temperature (T%). It is found that Eq. (1)
and the constant A are also applicable to the simulation re-
sults in Fig. 2(b); there the fit (the dashed line) matches the
linear dependence predicted by Eq. (1) using A=0.0106 and
the properties of this particular MG [CugsZrss, E=92 GPa,
T,=787 K (Ref. 26), and Tx=300 K].

Our model assumes that the machine-sample system
(MSS) is subjected to displacement-controlled and quasi-
static external loading. The fast shear-band sliding is then an
internal event in the closed MSS. The sample is initially
loaded to reach a. Once the flow is activated and the shear
band starts to slide, the resistance (Uf) in the shear plane is
smaller than the internal stress. The excess stress (Uy-crf)
causes the acceleration of, and the associated strain redistri-
bution in, the MSS. Note that in the above model, the major
shear band operates across the entire sample simultaneously
after activation. In other words, although the activation of the
shear band (or mobilization of atoms in the shear plane) may
be accomplished by the propagation of shear waves in cer-
tain form (at a velocity close to the speed of sound), the
subsequent sliding and growth of the shear offset proceed in
a cooperative manner. Such a “cooperative shear” scenario
(for the major shear band) is supported by experimental ob-
servations in Refs. 15-18 and 27.

During shear band sliding, the elastic energy stored in the
MSS is released, involving elastic unloading of both the ma-
chine and the sample, as well as the plastic shear of the shear
band (the sum of the displacements, defined in Fig. 1(d), is
effectively zero). The governing kinetic equation, written for
the vertical uniaxial loading direction, is

wd?
[o(x) - Uf(T)]T =Mx’, ()

where o(x) is the internal stress in the MSS. o(0)=0,, and
due to the elastic unloading o(x) decreases with increasing
sample displacement (x) that accompanies the corresponding
plastic shear. 0/(T) is a function of the local T at the given
moment in the shear band (Eq. (1)). M is the effective inertia
of the MSS when responding to the stress gradient and is an
empirical parameter estimated to be on the order of 10-100
kg for a typical MSS (see discussion in the next section). x”
is the second derivative of x, i.e., the acceleration. Using the
parameters defined in Fig. 1(d), we have

Ky Ex
3)
where L is the sample height, E is the Young’s modulus, and

S is defined by S= = Ifii in Ref. 17. The elastic unloading
associated with the mcreasing shear displacement x gradually
reduces the driving stress for accelerating the slide.

At the same time, however, the resistance O'f(T) is also
decreasing with increasing x, as 7T is elevated by AT in the
shear band due to the concentrated deformation (Eq. (1)).
The energy source of the T increase is the plastic work in the
shear band. The plastic work is fully converted into heat
when the flow reaches a quasisteady state but for the initial-

o(x) = o, _ES =0,

L _Z(Ks+ KM)x
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structural rejuvenation, part of the plastic work is stored in
the shear band as configurational potential energy.?® This
latter-structural rejuvenation, however, should be accom-
plished with a local strain of less than 100%.?? For the whole
sliding length of each stick-slip cycle (on the order of
~um, > 10 000% local strain), the energy cost for rejuvena-
tion is a very small fraction and negligible. The heat flux
(heat flow per unit area per unit time) dumped into the shear
band is thus a function of time (¢) and scales with sliding
speed. As a first-order approximation, it can be expressed as

f(t) = Eeyx" sin 0, (4)

where €, is the yield strain, which is almost a constant
(2%), and @ is the shear band angle [Fig. 1(d)]. x’ is the
first derivative of x, i.e., instantaneous vertical-sliding speed,
which is also a function of time 7. The “first-order approxi-
mation” refers to the use of a constant Eg, term to represent
the average stress level in the sample during sliding. The
stress in fact oscillates with the serration but the amplitude is
small [Fig. 1(c)].

Considering the shear band as a two-dimensional heat
source with heat flux f(r), and the sample body as a three-
dimensional heat-conducting medium, the instantaneous 7
rise in the shear band is*

)

1 t
/— f(t— T) Ik}
2pcNmat g \NT

AT(r) =

where p is the (sample) mass density, ¢, is the heat capacity,
and « is the thermal diffusivity.

By substituting Eq. (4) into Eq. (5), and then plugging
Egs. (1), (3), and (5) into Eq. (2), the governing kinetic equa-
tion is then

( __Ex )_( ssm@f
% L(1+5) o 2pc, T\ ra
2
x(t-n% )}”j - My ©)

with boundary conditions x(0)=0 and x’(0)=0. It should be
noted that the above model is only applicable at small overall
sample plastic strains, when the loading geometry and the
uniaxial stress state are not noticeably affected by the shear
off. The later stage of the stress-strain curve in Fig. 1 (i.e.,
when the sample has been significantly deformed) is beyond
the scope of the present discussion.

III. RESULTS AND DISCUSSION

If we were to ignore the T rise, the serration cycle could
be solved analytically from Eq. (6), explicitly giving the
shear step size

Ax= Mm +5). 7)
E

Substituting Eq. (7) for x in Eq. (3), the corresponding stress
drop when the band stops is then 2(o,-0y). Equation (7)
implies that for a cold sliding shear band, there is no intrinsic
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FIG. 3. (Color online) Evolution of (a) vertical displacement (x),
(b) vertical sliding speed (v), and (c) temperature in the shear
band (7), all as a function of shear-band-sliding time z. Solid
red lines are model predictions with the 7 rise considered; dotted
black lines are model solutions without the T effect; vertical blue
bars represent the range of experimentally measured step size
for corresponding samples (Table I) (Ref. 18). The material proper-
ties used are: E=80 GPa, p=6.5X10° kg/m?, ¢,=350 J/(kg-K),
@=2.2X107% m?/s, T,=650 K, 60=45°, and T;=300 K for
Zr64‘13Cu15_75Ni10‘12A110 BMG (Refs. 6 and 15—18)

mechanism for catastrophe; the step size simply scales with
L(1+S) and the stress drop is a constant-material property.
For Zrg, 13Cu;575Nijg 10Al g, the observed stress drop in
Fig. 1 (and also Refs. 15-18) is ~20 MPa, which means
(0y-07) is ~10 MPa if the shear band is indeed cold in the
d=1 mm sample (this will be justified by the full solution to
Eq. (6) later, in a self-consistent manner). We will then use
this (0y-0;) and the other properties of this BMG (Fig. 3
caption), to solve Eq. (6) numerically (now with the T effect
considered). The output of Eq. (6) predicts the evolution of
the displacement x, the sliding speed v, and the temperature
T inside the shear band, all as a function of the time elapsed

PHYSICAL REVIEW B 80, 134115 (2009)

during shear-band sliding. The results are plotted in Fig. 3
and also listed in Table I. For d=1.0, 1.5, and 2.0 mm, the
sliding clearly goes through an acceleration-deceleration-
stop cycle [see the sliding speed plotted in Fig. 3(b)]. When
the shear band stops, the predicted shear-step size (Ax) com-
pares very well with the range observed in experiments for
these different-sized samples [Fig. 3(a)], adequately explain-
ing the observed scaling of the step size with d (and the step
size reported by others for similar sample sizes'>!®). The
time elapsed in this sliding event (a few ms, Fig. 3) agrees
with experimental measurements within an order of
magnitude.!%-!1%1316 The predicted shear band sliding speed
[on the order of 1 mm/s, Fig. 3(b)] is also consistent with a
recent estimate (2 mm/s) based on experimental measure-
ments of the time interval and the corresponding strain re-
lease in a serration.!! As for the T rise, Fig. 3(c) predicts only
minor increase [well below 7, (Refs. 10 and 11)]. In these
smaller samples the shear band is thus indeed cold. Its slid-
ing is stable, exhibiting the stop-and-go cycles. This justifies
the use of the observed stress drop in Fig. 1 as 2(oy-0y), as
discussed earlier for the cold-band assumption. As expected
for the stick slip, the stress drop (~20 MPa) is observed to
be almost constant for this BMG in various experiments.'3-!8

Figure 3 and Table I also predict that for the larger
samples with d=3.0 and 4.0 mm of the same BMG, the shear
displacement (step size) diverges (no stop) and the T in shear
band would exceed T,. Stable serration would then not be
possible. Indeed, our d=3.0 and 4.0 mm samples showed
runaway failure after yielding and the surface sheared apart
is overwhelmingly dominated by the familiar vein-like
pattern,'® as opposed to that in Fig. 1(b) for cold sliding. The
origin of the catastrophic instability is the rising 7. In these
larger samples, the shear band accelerates continuously [Fig.
3(a)] and inevitably turns into a hot one [Fig. 3(c)] during a
single sliding event.

In addition to this specific quantitative case, Eq. (6) also
predicts the general trend for BMGs. Whether or not the
serration (or cold shear band) is possible is primarily deter-

mined by the competition between the LL term and the

0 (1+5)
% Jox' (- T)L\l—; term, as the former term reduces the
internal driving stress while the latter one reduces the resis-
tance in the flowing shear band. Depending on which of the
two is dominant, the net driving stress (the entire left side of

Eq. (6)) is either positive (accelerating) or negative (deceler-
. . . E AE?%e, sin 0
ating). In the weighting factors, i+ and et the pa-

rameters are mostly material properties except for L(1+S).
For a specific BMG material, when L(1+S) is larger than a
critical value of material property, A, the reduction in the
internal stress due to elastic unloading is inadequate to com-
pensate for the reduction in resistance due to the 7T rise. The
net driving stress is then always positive and the sliding
would continue on without ever stopping, feeding more and
more energy into the shear band and continuously raising the
T, which in turn drives the shear out of control. This is thus
a catastrophic shear band.

Therefore, \,;, can be used to evaluate the intrinsic ability
of the material to sustain stable plastic deformation and it
may have some connections with the toughness (e.g., K;¢).
The A, has a unit of length and it can be intuitively per-

134115-4



COLD VERSUS HOT SHEAR BANDING IN BULK...

(@-, |
70 7 Aspectratio 2:1  |[—Model (4;)
6.0 ® w/ serrations
50 - A w/o serrations
€404 a A
<301 a .
2.0 - e o
4 ° 2
10 {fe o @ A‘”’=LG+Z§E)=IZOM
K
0.0 : — N —
0 100000 200000 300000
Ky (N/mm)
(b)-, | rd?
=0 Aoy = L(1+ L E) =12.0mimn
6.0 - 4Lk,
5.0 A
E 4.0 1 ®  Aspectratio 1:1
= 3.0 1 —Model (4,,;)
2.0 A ® w/ serrations
1.0 A w/o serrations |
0.0 T T T S
0 100000 200000 300000
Ky (N/mm)

FIG. 4. (Color online) The predicted functional form of \..;
separates very well the two shear-band regimes (stick slip versus
runaway instability) observed in experiments (Ref. 17). Here, d
denotes the sample diameter and «,, denotes the machine stiffness.
Two different sample-aspect ratios exhibit consistent \,;,, indicat-
ing that N\, is a material property related to intrinsic plasticity.

ceived as the upper limit of sample size above which the
sliding of a single band in the sample is intrinsically un-
stable. In Fig. 4, we have plotted a boundary line in the
functional form of L(1+S)=X\_,;,=constant, which well sepa-
rates the available experimental data for different sample d,
aspect ratio, and k,,."” One can see that cold shear banding
with slow stop-and-go growth of the shear offset is more
likely in small-scale samples; an extreme case was in fact
observed before in in situ transmission electron microscopy
tests of submicron-sized BMG pillars.’*> In the videos
recorded,?! the shear band shows an instantaneous speed of a
few hundred nanometers per second, orders of magnitude
smaller than that in the conventional bulk samples (including
those in Table I). The shear band there exhibits clear stick-
slip behavior. Our analysis presented in this paper thus offers
another explanation of the observed sample-size effects on
the plastic-deformation behavior of metallic glasses.
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Finally, we briefly address a few issues related to the
present modeling work. The effective inertia M in Eq. (2) is
not a measurable quantity although we have provided an
estimated range for it. While there might be quantitative un-
certainties, its qualitative implication is clear: In a realistic
experiment, the machine and its response must be considered
during shear-band sliding. Although the sliding time in our
case changed by a factor of 2 when M changes from 10 to
100 kg, the order of magnitude and the major conclusions are
not affected by the exact value of M, provided that it repre-
sents the whole MSS, and falls in the reasonable range (e.g.,
M=50 kg in Fig. 3).

Figures 1(a) and 1(c) show a small decrease in stress and
increase in stress drop at larger plastic strains. Presumably
this is partly because the increasing shear off gradually in-
fluences the loading geometry and stress field. Such effects
are beyond the scope of the current model. In fact, the
present work addresses whether flow serrations can be ob-
served or the sample fails quickly after yielding. Experimen-
tally, however, even samples showing flow serration at the
beginning of the stress-strain curve may finally fail on catas-
trophe, at large plastic strains. The instability in this case is
likely to be assisted by the distorted loading geometry, which
may lead to the formation of microcavitations and microc-
rack, etc. These are additional extrinsic factors introduced
during deformation; the intrinsic material property (e.g., the
initial o at T) in the shear band, however, is not expected to
change significantly with increasing strain.

In experiments, plastic strains may also arise from more
than one shear band, and the serrations observed in the
stress-strain curve may thus correspond to the initiation of
multiple shear bands, which is different from the scenario
discussed in this paper. However, if the major shear band is
catastrophic (assuming not arrested by confinement or nano-
scale entities such as crystals), it would leave no time for
other shear bands to develop. Therefore, the cold shear band-
ing and the stop-and-go stick slip should be important for
giving other shear bands a chance to contribute to the plastic
strains.

We are aware that there have been other papers (e.g.,
Refs. 8 and 10—13) that model the temperature in shear band,
where experimentally observed shear step size and sliding
time are used as input to estimate the sliding speed and the
final temperature in the shear band. The equation used is
based on the assumption of constant heat flux for the whole
process.30 Different from previous models, here we are mod-
eling the stick-slip cycle and we do so using minimum ex-
perimental input (mostly sample/machine properties). The
offset step size, sliding time, sliding speed, and temperature
are all output results of the model. These results can then be
compared with experimental measurements, such as those in
Fig. 1 and in Ref. 11. In addition, our model also predicts the
dependence of these output results on sample size and ma-
chine stiffness, and explains the bifurcated shear-banding be-
haviors (stick slip versus catastrophe). The underlying com-
petition between the rates of stress release and temperature
rise is discussed. The heat flux in our model is not assumed
to be constant but scales with the instantaneous sliding speed
so that the self-propelling nature of the shear-band instability
is better captured and described.
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IV. CONCLUSIONS

In summary, in a displacement-controlled compression
test of a BMG, the dominant shear band can slide in a stick-
slip manner, giving rise to controlled and sustained plastic
strain. Our analysis predicts an acceleration-deceleration
cycle that explains the stop-and-go behavior observed in ex-
periments. The temperature rise in such shear bands are pre-
dicted to be very small, quantitatively illustrating that such
shear bands can be cold. We have explained why the shear
step size of the serration is observed to scale with L(1+5S),
demonstrating that there should be sample-size effects and
machine-stiffness effects (such as those in Figs. 1 and 4). For
example, for a given shear-banding displacement, a smaller
sample experiences a larger strain and hence a larger elastic
unloading of the stress to cause a more pronounced decelera-
tion of the shear band. We also calculated the speed at which
the shear offset grows, which compares favorably with ex-
perimental measurements (e.g., Refs. 10 and 11). In addition,
for a specific BMG there is a critical value \,;, for L(1+S),
above which the shear band becomes hot instead, and is
hence unstoppable. The use of the S index alone!” as the
indicator is inadequate in this regard. For example, with d
fixed, a larger L would lead to a smaller S, which means
stable serration is more likely (i.e., S is less likely to exceed
its critical value for the given BMG). This is inconsistent

PHYSICAL REVIEW B 80, 134115 (2009)

with experimental observations. The new instability index
L(1+5S) resolves this paradox and is expected to be a more
appropriate indicator to predict the stability trends (Fig. 4).
This \.,;;, which is a material property, can be used to evalu-
ate the intrinsic plasticity of the BMG. Cold shear banding
provides an explanation to the “large plasticity” observed in
some BMGs, especially in small (on the order of 1 mm)
samples and in submicron pillars.3'3? In these cases, experi-
mentally it is indeed observed that the shear band exhibits
the stop-and-go behavior, low speed of the shear offset
growth, and striations on the sheared surfaces.'>!6-1831 Of
course, multiple shear bands do often come into play in
BMGs that can accommodate large plastic strains. However,
as the hot shear bands tend to be catastrophic, the controlled
and serrated sliding of the major shear band is also an im-
portant condition for multiple shear bands to have the oppor-
tunity to contribute to the plastic deformation. As such, the
discussion here regarding the regime of cold shear banding
should have impact on the understanding of shear-band be-
havior in BMGs.
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